Distributive Lattice-Structured Ontologies

نویسندگان

  • Hans Bruun
  • Dion Coumans
  • Mai Gehrke
چکیده

In this paper we describe a language and method for deriving ontologies and ordering databases. The ontological structures arrived at are distributive lattices with attribution operations that preserve ∨, ∧ and ⊥. The preservation of ∧ allows the attributes to model the natural join operation in databases. We start by introducing ontological frameworks and knowledge bases and define the notion of a solution of a knowledge base. The import of this definition is that it specifies under what condition all information relevant to the domain of interest is present and it allows us to prove that a knowledge base always has a smallest, or terminal, solution. Though universal or initial solutions almost always are infinite in this setting with attributes, the terminal solution is finite in many cases. We describe a method for computing terminal solutions and give some conditions for termination and non-termination. The approach is predominantly coalgebraic, using Priestley duality, and calculations are made in the terminal coalgebra for the category of bounded distributive lattices with attribution operations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reasoning With Weighted Ontologies

We study the problem of reasoning over weighted ontologies. We assume that every axiom is labeled with an element of a distributive lattice (called its weight) and try to compute its so-called boundary, with respect to a given property. We show that axiom pinpointing is the most general instance of this problem. Finally, we present three applications of the problem of boundary computation.

متن کامل

Total graph of a $0$-distributive lattice

Let £ be a $0$-distributive lattice with the least element $0$, the greatest element $1$, and ${rm Z}(£)$ its set of zero-divisors. In this paper, we introduce the total graph of £, denoted by ${rm T}(G (£))$. It is the graph with all elements of £ as vertices, and for distinct $x, y in £$, the vertices $x$ and $y$ are adjacent if and only if $x vee y in {rm Z}(£)$. The basic properties of the ...

متن کامل

Distributive lattices with strong endomorphism kernel property as direct sums

Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem  2.8}). We shall determine the structure of special elements (which are introduced after  Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...

متن کامل

The Developement of A Lattice Structured Database

In this project we have investigated the possibilities to make a system based on the concept algebra described in [3], [4] and [5]. The concept algebra is used for ontology specification and knowledge representation. It is a distributive lattice extended with attribution operations. One of the main ideas in this work is to use Birkhoff’s representation theorem, so we represent distributive latt...

متن کامل

On lattice of basic z-ideals

  For an f-ring  with bounded inversion property, we show that   , the set of all basic z-ideals of , partially ordered by inclusion is a bounded distributive lattice. Also, whenever  is a semiprimitive ring, , the set of all basic -ideals of , partially ordered by inclusion is a bounded distributive lattice. Next, for an f-ring  with bounded inversion property, we prove that  is a complemented...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009